Abstract

The recent identification of functional depots of brown adipose tissue (BAT) in adult humans has potential implications for the treatment of obesity. In order to evaluate new therapies aimed at inducing the production of more BAT or activating BAT in humans, it will be important to develop noninvasive methods to assess the functional state of the tissue in vivo. In this study, we investigate the feasibility of using hyperpolarized (13)C imaging to noninvasively identify functional, activated BAT in an in vivo rodent model, in less than 1 min, following an infusion of pre-polarized [1-(13)C] pyruvate. Hyperpolarized (13)C imaging was used to monitor BAT metabolic conversion of pre-polarized [1-(13)C] pyruvate in rats during baseline and norepinephrine (NE)-stimulated conditions. Activated BAT, stimulated by NE injection, can be detected in rats by increased conversion of pre-polarized [1-(13)C] pyruvate into its downstream products (13)C bicarbonate and [1-(13)C] lactate. The colocalization of the (13)C signal to interscapular BAT was validated using hematoxylin-eosin histological staining. The radiation-free nature and recent translation into the clinic of the hyperpolarized (13)C-imaging test may potentially facilitate trials of therapeutics targeting BAT activation in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.