Abstract

Direct mechanical ventricular actuation is effective to reestablish the ventricular function with non-blood contact. Due to the energy loss within the driveline of the direct cardiac compression device, it is necessary to acquire the accurate value of assist pressure acting on the heart surface. To avoid myocardial trauma induced by invasive sensors, the noninvasive estimation method is developed and the experimental device is designed to measure the sample data for fitting the estimation models. By examining the goodness of fit numerically and graphically, the polynomial model presents the best behavior among the four alternative models. Meanwhile, to verify the effect of the noninvasive estimation, the simplified lumped parameter model is utilized to calculate the pre-support and the post-support left ventricular pressure. Furthermore, by adjusting the driving pressure beyond the range of the sample data, the assist pressure is estimated with the similar waveform and the post-support left ventricular pressure approaches the value of the adult healthy heart, indicating the good generalization ability of the noninvasive estimation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call