Abstract

Right-heart catheterization is the most accurate method for measuring pulmonary artery pressure (PAP). It is an expensive, invasive procedure, exposes patients to the risk of infection, and is not suited for long-term monitoring situations. Medical researchers have shown that PAP influences the characteristics of heart sounds. This suggests that heart sound analysis is a potential method for the noninvasive diagnosis of pulmonary hypertension. We describe the development of a prototype system, called PHD (pulmonary hypertension diagnoser), that implements this method. PHD uses patient data with machine learning algorithms to build models of how pulmonary hypertension affects heart sounds. Data from 20 patients were used to build the models and data from another 31 patients were used as a validation set. PHD diagnosed pulmonary hypertension in the validation set with 77% accuracy and 0.78 area under the receiver-operating-characteristic curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.