Abstract
Oral Squamous Cell Carcinoma (OSCC) is one of the most severe cancers in the world, and its early detection is crucial for saving patients. There is an inevitable necessity to develop the automatic noninvasive OSCC diagnosis approach to identify the malignant tissues on Optical Coherence Tomography (OCT) images. This study presents a novel Multi-Level Deep Residual Learning (MDRL) network to identify malignant and benign(normal) tissues from OCT images and trains the network in 460 OCT images captured from 37 patients. The diagnostic performances are compared with different methods in the image-level and the resected patch-level. The MDRL system achieves the excellent diagnostic performance, with 91.2% sensitivity, 83.6% specificity, 87.5% accuracy, 85.3% PPV, and 90.2% NPV in image-level, with 0.92 AUC value. Besides, it also implements 100% sensitivity, 86.7% specificity, 93.1% accuracy, 87.5% PPV, and 100% NPV in the resected patch-level. The developed deep learning system expresses superior performance in noninvasive oral squamous cell carcinoma diagnosis, compared with traditional CNNs and a specialist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.