Abstract

Nasopharyngeal carcinoma (NPC) is a malignant tumor commonly associated with Epstein-Barr virus (EBV) infection, and its early diagnosis as well as its differentiation from nasopharyngitis (NPG) remains challenging due to the insufficient sensitivity of routine screening methods in clinical practice. To date, circulating extracellular vesicles (EVs, 40-1000 nm) have shown appealing potential in liquid biopsy for cancer diagnosis and prognosis. Herein, nanoflow cytometry (nFCM) capable of single EV analysis was applied to examine the expression of surface proteins with very low copy numbers on individual EVs as small as 40 nm. The particle concentrations of five EV subsets exposing EBV-encoded latent membrane proteins (LMP1 and LMP2A) and tumor markers (PD-L1, EGFR, and EpCAM) in plasma were determined rapidly via single-particle enumeration. We identified a five-marker panel named EVSUM5 (an unweighted sum of the concentration of the five individual EV subsets) that significantly surpassed the traditional VCA-IgA assay in discriminating NPC patients from both healthy donors and NPG patients with accuracies of 96.3 and 83.1%, respectively. Moreover, EVSUM2 (an unweighted sum of virus-specific LMP1- and LMP2A-positive EVs) could achieve the diagnosis of NPG with an accuracy of 82.6%. Collectively, the work presented a rapid, reliable, and noninvasive method as well as two diagnostic markers to help more accurately differentiate NPC from NPG patients and healthy donors in clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.