Abstract
Bladder cancer (BC) is a malignant tumor that occurs in the bladder mucosa and has a high morbidity and mortality rate. Early diagnosis means that cystoscopy-aided imaging is invasive and pricey. Microfluidic immunoassay enables noninvasive detection of early BC. However, its clinical applications are limited due to the poor internal design and hydrophobic surface of polydimethylsiloxane (PDMS) chip. This study aims to design a PDMS chip with right-moon capture arrays and prepare a hydrophilic surface by APTES with different concentrations (PDMS-three-step: O2 plasma-5-98% APTES), which facilitates early detection of BC with enhanced sensitivity. Simulations showed that the right-moon arrays in the capture chamber reduced the flow velocity and shear stress of the target molecule NMP22, improving the capture performance of the chip. PDMS-three-step surface was measured by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), contact angle, and antibody immobilization. The results displayed that the contact angle of PDMS-three-step remained in the range of 40° to 50° even after 30 days of exposure to air, leading to a more stable hydrophilic surface. The effectiveness of the PDMS chip was assessed via the quantitative immunoassay of the protein marker NMP22 and its sensitivity analysis to urine. After the assessment, the LOD of NMP22 was 2.57 ng mL-1, and the sensitivity was 86.67%, which proved that the PDMS chip was effective. Thus, this study provided a novel design and modification method of the microfluidic chip for the early detection of BC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.