Abstract

We aimed to find out the effects of short term and long term hydrocephalus and intracranial ventricular volume changes on cochlear functions by using distortion product otoacoustic emission (DPOAE) in experimental hydrocephalus rat models for the first time in literature. This study was performed with 48 healthy, adult (8 weeks old), Sprague-Dawley rats which weighed between 200 and 240g. Six groups were formed in this study: short term control, short term sham, short term hydrocephalus, long term control, long term sham and long term hydrocephalus groups. Each group contained eight rats. Short term period was 4 weeks and long term period was 8 weeks after the study started. At the end of these periods, DPOAE measurements were performed and then rats were sacrificed to determine ventricular volumes. DPOAE values at all frequencies were significantly decreased in the short term hydrocephalus group when compared to the short term control and short term sham groups. DPOAE values at all frequencies were significantly decreased in the long term hydrocephalus group when compared to the long term control and long term sham groups. Besides, long term sham group which had higher ventricular volumes than long term control group also had lower DPOAE measurements. Significant associations were present between DPOAE measurements and ventricular volumes in hydrocephalus models. The functional disturbances in cochlear functions due to hydrocephalus have been demonstrated with DPOAE measurements in this study. DPOAE measurements may be thought as an easily applicable non-invasive method in detection and follow-up of patients with hydrocephalus. Our findings should be supported with clinical studies in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.