Abstract

Aberrant signaling through the AKT kinase mediates oncogenic phenotypes including cell proliferation, survival, and therapeutic resistance. Here, we utilize a bioluminescence reporter for AKT kinase activity (BAR) to noninvasively assess the therapeutic efficacy of the EGFR inhibitor erlotinib in KRAS-mutated lung cancer therapy. A549 non–small cell lung cancer cell line, engineered to express BAR, enabled the evaluation of compounds targeting the EGFR/PI3K/AKT pathway in vitro as well as in mouse models. We found that erlotinib treatment of resistant A549 subcutaneous and orthotopic xenografts resulted in significant AKT inhibition as determined by an 8- to 13-fold (P < .0001) increase in reporter activity 3 hours after erlotinib (100 mg/kg) administration compared to the control. This was confirmed by a 25% (P < .0001) decrease in pAKT ex vivo and a decrease in tumor growth. Treatment of the orthotopic xenograft with varying doses of erlotinib (25, 50, and 100 mg/kg) revealed a dose- and time-dependent increase in reporter activity (10-, 12-, and 23-fold). Correspondingly, a decrease in phospho-AKT levels (0%, 16%, and 28%, respectively) and a decrease in the AKT dependent proliferation marker PCNA (0%, 50%, and 50%) were observed. We applied μ-CT imaging for noninvasive longitudinal quantification of lung tumor load which revealed a corresponding decrease in tumor growth in a dose-dependent manner. These findings demonstrate the utility of BAR to noninvasively monitor AKT activity in preclinical studies in response to AKT modulating agents. These results also demonstrate that BAR can be applied to study drug dosing, drug combinations, and treatment efficacy in orthotopic mouse lung tumor models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.