Abstract

Non-invasive electroencephalography (EEG) based brain-computer interface (BCI) is able to provide an alternative means of communicat ion with and control over external assistive devices. In general, EEG is insufficient to obtain detailed information about many degrees of freedom (DOF) for arm movements. The main objectives are to design a non-invasive BCI and create a signal decoding strategy that allows people with limited motor control to have more command over potential prosthetic devices. Eight healthy subjects were recruited to perform visual cues directed reaching tasks. Eye and motion artifacts were identified and removed to ensure that the subjects' visual fixation to the target locations would have litt le or no impact on the final result. We applied a Fisher Linear Discriminate (FLD) classifier to perform single-trial classification of the EEG to decode the intended arm movement in the left , right, and forward directions (before the onsets of actual movements). The mean EEG signal amplitude near the PPC region 271-310ms after visual stimu lation was found to be the dominant feature for best classification results. A signal scaling factor developed was found to imp rove the classification accuracy fro m 60.11% to 93.91% in the binary class (left versus right) scenario. This result demonstrated great promises for BCI neuroprosthetics applications, as motor intention decoding can be served as a prelude to the classification of imag ined motor movement to assist in motor disable rehabilitation, such as prosthetic limb or wheelchair control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.