Abstract

A novel method to derive pressure-volume (PV) loops noninvasively from cardiac magnetic resonance images has recently been developed. The aim of this study was to evaluate inter- and intraobserver variability of hemodynamic parameters obtained from noninvasive PV loops in healthy controls, subclinical diastolic dysfunction (SDD), and patients with heart failure with preserved ejection fraction, mildly reduced ejection fraction, and reduced ejection fraction. We included 75 subjects, of whom 15 were healthy controls, 15 subjects with SDD (defined as fulfilling 1 to 2 echocardiographic criteria for diastolic dysfunction), and 15 patients with preserved ejection fraction, 15 with mildly reduced ejection fraction, and 15 with reduced ejection fraction. PV loops were computed using time-resolved left ventricular volumes from cardiac magnetic resonance images and a brachial blood pressure. Inter- and intraobserver variability and intergroup differences of PV loop-derived hemodynamic parameters were assessed. Bias was low and limits of agreement were narrow for all hemodynamic parameters in the inter- and intraobserver comparisons. Interobserver difference for stroke work was 2 ± 9%, potential energy was 4 ± 11%, and maximal ventricular elastance was -4 ± 7%. Intraobserver for stroke work was -1 ± 7%, potential energy was 3 ± 4%, and maximal ventricular elastance was 1 ± 5%. In conclusion, this study presents a fully noninvasive left ventricular PV loop analysis across healthy controls, subjects with SDD, and patients with heart failure with preserved or impaired systolic function. In conclusion, the method for PV loop computation from clinical-standard manual left ventricular segmentation was rapid and robust, bridging the gap between clinical and research settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.