Abstract

The purpose of this study was to provide fundamental in vivo validation of a method with the use of aortic regurgitant (AR) jet signals recorded with continuous wave (CW) Doppler for assessing left ventricular (LV) isovolumic contraction and relaxation. Preliminary studies have suggested that analysis of CW Doppler AR velocity signals permits the estimation of LV positive and negative dP/dt. We studied 19 hemodynamically different states in 6 sheep with surgically induced chronic aortic regurgitation. CW AR velocity spectra and high-fidelity LV and aortic pressures were recorded simultaneously. Rates of LV pressure rise and fall (RPR and RPF) were calculated by determining the time interval between points at 1 m/s and 2.5 m/s in the deceleration and acceleration slopes of the CW Doppler AR velocity envelope (corresponding to a pressure change of 21 mm Hg). RPR and RPF calculated by CW Doppler analysis for each state were compared with the peak positive dP/dt and negative dP/dt, obtained from the corresponding high-fidelity LV pressure curve, respectively. The LV peak positive and negative dP/dt derived by catheter ranged from 817 to 2625 mm Hg/s and from 917 to 2583 mm Hg/s, respectively. Multiple regression analysis showed that Doppler RPR correlated well with catheter peak positive dP/dt ( r = 0.93; mean differences, −413 ± 250 mm Hg/s). There was also good correlation and agreement between Doppler RPF and the catheter peak negative dP/dt ( r = 0.89; mean difference, −279 ± 239 mm Hg/s). Both Doppler-determined RPR and RPF underestimated their respective LV peak dP/dt. CW Doppler AR spectra can provide a reliable noninvasive estimate of LV dP/dt and could be helpful in the serial assessment of ventricular function in patients with aortic regurgitation. (J Am Soc Echocardiogr 2001;14:715-22.)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.