Abstract

After lung transplantation, early detection of acute allograft rejection is important not only for timely and optimal treatment, but also for the prediction of chronic rejection which is a major cause of late death. Many biological and immunological approaches have been developed to detect acute rejection; however, it is not well known whether lung mechanics correlate with disease severity, especially with pathological rejection grade. In this study, we examined the relationship between lung mechanics and rejection grade development in a rat acute rejection model using the forced oscillation technique, which provides noninvasive assessment of lung function. To this end, we assessed lung resistance and elastance (RL and EL) from implanted left lung of these animals. The perivascular/interstitial component of rejection severity grade (A‐grade) was also quantified from histological images using tissue fraction (TF; tissue + cell infiltration area/total area). We found that TF, RL, and EL increased according to A‐grade. There was a strong positive correlation between EL at the lowest frequency (Elow; EL at 0.5 Hz) and TF (r2 = 0.930). Furthermore, the absolute difference between maximum value of EL (Emax) and Elow (Ehet; Emax − Elow) showed the strong relationship with standard deviation of TF (r2 = 0.709), and A‐grade (Spearman's correlation coefficients; rs = 0.964, P < 0.0001). Our results suggest that the dynamic elastance as well as its frequency dependence have the ability to predict A‐grade. These indexes should prove useful for noninvasive detection and monitoring the progression of disease in acute rejection.

Highlights

  • Noninvasive assessment for acute allograft rejection in a rat lung transplantation model( Abstract要旨 )

  • Noninvasive assessment for acute allograft rejection in a rat lung transplantation model

  • 左片肺の定常一回換気量(3ml/ kg/ body weight)の振幅30%のFOT(0.5 – 19.625 Hz)を8

Read more

Summary

Introduction

Noninvasive assessment for acute allograft rejection in a rat lung transplantation model( Abstract要旨 )

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.