Abstract

Ultrasound methods in conjunction with microbubbles have been used for brain drug delivery, treatment of stroke, and imaging of cerebral blood flow. Despite advances in these areas, questions remain regarding the range of ultrasound parameters that disrupt the blood-brain barrier (BBB). In this study, several conditions were investigated to either enhance or reduce the likelihood of BBB disruption. Pulsed focused ultrasound (frequency: 1.5 MHz, pressure: 0.46 MPa, pulse repetition frequency (PRF): 0.1 to 25 Hz, pulse length (PL): 0.03 to 30 milliseconds) was noninvasively and locally administered to a predetermined region in the left hemisphere in the presence of circulating preformed microbubbles (Definity, Lantheus Medical Imaging, N. Billerica, MA, USA; 0.01, 0.05, 0.25 μL/g). Trans-BBB delivery of 3-kDa dextran was observed at PRFs as low as 1 Hz, whereas consistent delivery was observed at 5 Hz and above. Delivery was demonstrated at a PL as low as 33 microseconds. Although the delivered dextran concentration increased with the PL, this also increased the heterogeneity of the resulting distribution. In conclusion, key parameters that disrupt the BBB were identified out of a wide range of conditions. Reducing the total number of emitted acoustic cycles by shortening the PL, or decreasing the PRF, was also found to facilitate a more spatially uniform distribution of delivered dextran.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.