Abstract

Background and ObjectivesInstantaneous wave-free ratio (iFR) is a new invasive indicator of myocardial ischaemia, and its diagnostic performance is as good as the “gold standard” of myocardial ischaemia diagnosis: fractional flow reserve (FFR). iFR can be approximated by iFRCT, which is calculated based on noninvasive coronary CT angiography (CTA) images and computational fluid dynamics (CFD). However, the existing methods for calculating iFRCT fail to accurately simulate the resting state of the coronary artery, resulting in low computational accuracy. Furthermore, the use of CFD technology limits its computational efficiency, making it difficult to meet clinical application needs. The role of coronary microcirculatory resistance compensation suggests that microcirculatory resistance can be adaptively reduced to compensate for increases in coronary stenotic resistance, thereby maintaining stable myocardial perfusion in the resting state. It is therefore necessary to consider this compensation mechanism to establish a high-fidelity microcirculation resistance model in the resting state in line with human physiology, and so to achieve accurate calculation of iFRCT. MethodsIn this study we successfully collected clinical data, such as FFR, in 205 stenotic vessels from 186 patients with coronary heart disease. A neural network model was established to predict coronary artery stenosis resistance. Based on the compensation mechanism of coronary microcirculation resistance, an iterative solution algorithm for microcirculation resistance in the resting state was developed. Combining the two methods, a simplified single-branch model combining coronary stenosis and microcirculation resistance was established, and the noninvasive and rapid numerical calculation of iFRCT was performed. ResultsThe results showed that the mean squared error (MSE) between the pressure drop predicted by the neural network value for the coronary artery stenosis model and the ground truth in the test set was 0.053 %, and correlation analysis proved that there was a good correlation between them (r = 0.99, p < 0.001). With reference to clinical diagnosis of myocardial ischaemia (using FFR as the gold standard), the diagnostic accuracy of the iFRCT calculation model for the 205 cases was 88.29 % (r = 0.71, p < 0.001), and the total calculation time was < 8 s. ConclusionsThe results of this study demonstrate the utility of a simplified single-branch model in an iFRCT calculation method based on haemodynamics and deep learning, which is important for noninvasive and rapid diagnosis of myocardial ischaemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.