Abstract

Oligodeoxynucleotides containing unmethylated cytosine–phosphate–guanosine motifs (CpG-ODN) possess immunostimulatory effects and potential antitumor activity. Since the skin is an easily available site of administration of CpG-ODN due to its accessibility and the presence of abundant antigen presenting cells, it is expected that the application of CpG-ODN to the skin would induce systemic immune response and antitumor activity. However, it is difficult to deliver hydrophilic macromolecules including CpG-ODN through the skin. We have previously demonstrated that small interfering RNA (siRNA) was efficiently delivered into rat epidermis by iontophoresis. In this report, we investigate the effect of transdermal iontophoretic delivery of CpG-ODN on the induction of immune responses and antitumor activity against B16F1 melanoma in mice. Iontophoresis promoted CpG-ODN delivery into the epidermis and dermis. Furthermore, iontophoretic delivery of CpG-ODN to the skin induced the expression of proinflammatory and Th1-type cytokines in the skin and draining lymph node. Finally, transdermal iontophoretic delivery of CpG-ODN led to antitumor activity against B16F1 melanoma. Interestingly, the CpG-ODN administration site is not restricted to the tumor area. In conclusion, CpG-ODN delivered transdermally induced potent antitumor activity, and our system is expected to serve as a simple and noninvasive approach for cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.