Abstract

Surface electromyography (EMG) signals have shown promising applications in human-machine interfacing (HMI) systems such as orthotics, prosthetics, and exoskeletons. Nevertheless, existing myoelectric control methods, generally based on time-domain or frequency-domain features, could not directly interpret neural commands. EMG decomposition techniques have become a prevailing solution to decode the motor neuron discharges from the spinal cord, whereas only single degree-of-freedom (DoF) movements are primarily involved in the current neural-based interfaces, resulting in limited intuitiveness and functionality. Here, we propose a non-invasive framework to analyze motor unit activities and estimate wrist torques during simultaneous contractions of multiple DoFs. Motor unit discharges were decoded from surface EMG signals and pooled into groups during sequential wrist movements. Then three neural features were extracted and linearly projected to the torques of multi-DoF tasks. On average, there were 44 ±13 motor units identified for each motion with a PNR value of 25.8 ±2.9 dB. The neural features outperformed the classic EMG feature on the estimation accuracy with higher correlation coefficients and smoothness. These results demonstrate the feasibility and superiority of the proposed framework in kinetics estimation of simultaneous movements, extending the potential applications of surface EMG decomposition in human-machine interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.