Abstract

 
 
 Breaking down the aggregated energy consumption into a detailed consumption per appliance is a crucial tool for energy efficiency in residential buildings. Non-intrusive load monitoring allows implementing this strategy using just a smart energy meter without installing extra hardware. The obtained information is critical to provide an accurate characterization of energy consumption in order to avoid an overload of the electric system, and also to elaborate special tariffs to reduce the electricity cost for users. This article presents an approach for energy consumption disaggregation in households, based on detecting similar consumption patterns from previously recorded labelled datasets. The experimental evaluation of the proposed method is performed over four different problem instances that model real household scenarios using data from an energy consumption repository. Experimental results are compared with twobuilt-in algorithms provided by the nilmtk framework (combinatorial optimization and factorial hidden Markov model). The proposed algorithm was able to achieve accurate results regarding standard prediction metrics. The accuracy was not affected in a significant manner by the presence of ambiguity between the energy consumption of different appliances or by the difference of consumption between training and test appliances.
 
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista Facultad de Ingeniería Universidad de Antioquia
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.