Abstract

Air leakages pose a major problem in both residential and commercial buildings. They increase the utility bill and result in excessive usage of Heating Ventilation and Air Conditioning (HVAC) systems, which impacts the environment and causes discomfort to residents. Repairing air leakages in a building is an expensive and time intensive task. Even detecting the leakages can require extensive professional testing. In this paper, we propose a method to identify the leaky homes from a set, provided their energy consumption data is accessible from residential smart meters. In the first phase, we employ a Non-Intrusive Load Monitoring (NILM) technique to disaggregate the HVAC data from total power consumption for several homes. We propose a recurrent neural network and a denoising autoencoder based approach to identify the 'ON' and 'OFF' cycles of the HVACs and their overall usages. We categorize the typical HVAC consumption of about 200 homes and any probable insulation and leakage problems using the Air Changes per Hour at 50 Pa (ACH50) metric in the Dataport datasets. We perform our proposed NILM analysis on different granularities of smart meter data such as 1 min, 15 mins, and 1 hour to observe its effect on classifying the leaky homes. Our results show that disaggregation can be used to identify the residential air-conditioning, at 1 min granularity which in turn helps us to identify the leaky potential homes, with an accuracy of 86%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call