Abstract
We investigate certain measures induced by families of non-intersecting paths in domino tilings of the Aztec diamond, rhombus tilings of an abc-hexagon, a dimer model on a cylindrical brick lattice and a growth model. The measures obtained, e.g. the Krawtchouk and Hahn ensembles, have the same structure as the eigenvalue measures in random matrix theory like GUE, which can in fact can be obtained from non-intersecting Brownian motions. The derivations of the measures are based on the Karlin-McGregor or Lindström-Gessel-Viennot method. We use the measures to show some asymptotic results for the models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.