Abstract
The standard approach to the specification of a secure system is to present a (usually state-based) abstract security model separately from the specification of the system's functional requirements, and establishing a correspondence between the two specifications. This complex treatment has resulted in development methods distinct from those usually advocated for general applications. We provide a novel and intellectually satisfying formulation of security properties in a process algebraic framework, and show that these are preserved under refinement. We relate the results to a more familiar state-based (Z) specification methodology. There are efficient algorithms for verifying our security properties using model checking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.