Abstract

We present a formalism to study many-particle quantum transport across a lattice locally connected to two finite, non-stationary (bosonic or fermionic) reservoirs, both of which are in a thermal state. We show that, for conserved total particle number, a system of nonlinear quantum-classical master equations describes the concurrent many-particle time evolution on the lattice and in the reservoirs. The finiteness of the reservoirs makes a macroscopic current emerge, which decreases exponentially in time, and asymptotically drives the many-particle configuration into an equilibrium state where the particle flow ceases. We analytically derive the time scale of this equilibration process, and, furthermore, investigate the imprint of many-particle interferences on the transport process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call