Abstract

In a continuous-time nonlinear driftless control system, a geometric phase is a consequence of nonintegrability of the vector fields, and it describes how cyclic trajectories in shape space induce non-periodic motion in phase space, according to an area rule. The aim of this paper is to shown that geometric phases exist also for discrete-time driftless nonlinear control systems, but that unlike their continuous-time counterpart, they need not obey any area rule, i.e., even zero-area cycles in shape space can lead to nontrivial geometric phases. When the discrete-time system is obtained through Euler discretization of a continuous-time system, it is shown that the zero-area geometric phase corresponds to the gap between the Euler discretization and an exact discretization of the continuous-time system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.