Abstract
We prove that general three- or four-dimensional systems %of differential equations are real-analytically nonintegrable near degenerate equilibria in the Bogoyavlenskij sense under additional weak conditions when the Jacobian matrices have a zero and pair of purely imaginary eigenvalues or two incommensurate pairs of purely imaginary eigenvalues at the equilibria. For this purpose, we reduce their integrability to that of the corresponding Poincare-Dulac normal forms and further to that of simple planar systems, and use a novel approach for proving the analytic nonintegrability of planar systems. Our result also implies that general three- and four-dimensional systems exhibiting fold-Hopf and double-Hopf codimension-two bifurcations, respectively, are real-analytically nonintegrable under the weak conditions. To demonstrate these results, we give two examples for the Rossler system and coupled van der Pol oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.