Abstract

The aim of this study was to design and construct a non-virulent simulant to replace several pathogenic viruses in the development of detection and identification methods in biodefense. A non-infectious simulant was designed and engineered to include the nucleic acid signature of VEEV (Venezuelan Equine Encephalitis virus), Influenza virus, Rift Valley Fever virus, Machupo virus, Lassa virus, Yellow Fever virus, Ebola virus, Eastern Equine Encephalitis virus, Junin virus, Marburg virus, Dengue virus, and Crimean-Congo virus, all in a single construct. The nucleic acid sequences of all isolates available for each virus species were aligned using ClustalW software in order to obtain conserved regions of the viral genomes. Specific primers were designed to permit the identification and differentiation between viral threat agents. A chimera of 3143 base pairs was engineered to produce 13 PCR amplicons of different sizes. PCR amplification of the simulant with virus-specific primers revealed products of the predicted length, in bands of similar intensity, and without detectable unspecific products by electrophoresis analysis. The simulant described could reduce the need to use infectious viruses in the development of detection and diagnostic methods, and could also be useful as a non-virulent positive control in nucleic acid-based tests against biological threat agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.