Abstract

The thermodynamic as well as optical properties of strongly coupled plasmas depend crucially on the average degree of ionization and the ionic state composition, which, however, cannot be determined by using the normal Saha equationusually used for the ideal plasmas. Hence, an adequate treatment of the ionization balance and the charge state distribution of strongly coupled plasmas is still a challenge for theory due to the interactions between the electrons and ions and among the electrons themselves. Based on a local density temperature-dependent ion-sphere model, the Saha equationapproach is extended to the regime of strongly coupled plasmas by taking into account the free-electron-ion interaction, the free-free-electron interaction, the nonuniform free-electron space distribution, and the free-electron quantum partial degeneracy. All the quantities, including the bound orbitals with ionization potential depression, free-electron distribution, and bound and free-electron partition function contributions, are calculated self-consistently in the theoretical formalism. This study shows that the ionization equilibrium is evidently modified by considering the above nonideal characteristics of the free electrons. Our theoretical formalism is validated by the explanation of a recent experimental measurement of the opacity of dense hydrocarbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.