Abstract
We consider two simple model systems describing effective repulsion in a nonideal Bose gas. The interaction Hamiltonians in these systems can be analytically represented as functions of the occupation number operators for modes with nonzero momenta (p ≠ 0). One of these models contains an interaction term corresponding to repulsion of bosons with the mode p = 0 and ensuring the thermodynamic superstability of the system; the other model does not contain such a term. We use the Bogoliubov–Dirac–Ginibre approximation and the method of correlation inequalities to prove that a Bose condensate can exist in these model systems. Because of the character of interaction, the condensate can be formed in the superstable case for any values of the spatial dimensions, temperature, and positive chemical potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.