Abstract

High-pressure synchrotron X-ray powder diffraction measurements of a synthetic zeolite NaA were carried out up to 2.5 GPa using pure water as pressure-transmitting (P) medium to provide non-hydrostatic (wet) conditions in a diamond anvil cell. The compressibility of wet zeolite NaA is similar to that measured at hydrostatic compression in water within the P-range 0-0.8 GPa, whereas between 1-2 GPa the zeolite becomes slightly more compressible and progressively amorphizes due to the non-hydrostatic conditions. Rietveld refinement at 0.37 GPa reveals a selective additional filling of the H 2 O sites in α- and β-cage, leading to about 30% increase of the total water content. The over-hydrated state of the zeolite is partially preserved after the pressure release. The over-hydration of zeolite pores, combined with a partial disordering at the onset of amorphization, apparently provides necessary conditions for the P-induced enhancement of water-cationic diffusion and the corresponding increase of ionic conductivity observed in zeolite NaA in non-hydrostatic water medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call