Abstract

An organic molecule was used as a surfactant for nanoparticle synthesis in liquid phase. However, residual molecules on the surface of the nanoparticles limit their catalytic applications, because the interaction of a reactant with the nanoparticle surface is interrupted. Therefore, it is favorable for catalytic applications that the organic molecule used in the synthesis of nanoparticles only induces a sol–gel reaction of the metal precursors and the formation of nanoparticles and hardly adheres to the resulting nanoparticles. Herein, we report surfactant-free and high-surface area maghemite nanostructures via nonhydrolytic sol–gel reaction. Using Fe(acetylacetonate)3 as an iron precursor and hexylamine as a solvent and growth inhibitor, Fe2O3 nanoparticles were generated by nonhydrolysis of the iron complex and condensation at 140 °C under an air atmosphere. Characterization revealed monodisperse nanoparticles with an average size of 2.3 nm and a crystalline phase of maghemite. Residual hexylamine is hardly observed, and thus their specific surface area is 403.7 m2/g. An experimental comparison of the Fe2O3 synthesis with hexylamine and benzylamine indicates that the cone angle of an organic molecule is an important factor in the synthesis of nanoparticles with a small size and high surface area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call