Abstract
Yttrium–aluminum oxides are interesting compounds, which are widely used as hosts for lasers and phosphors due to their stable physical and chemical properties. The manufacture of YAG has been investigated thoroughly. YAG powders are traditionally synthesized through the reaction of aluminum and yttrium powders at high temperatures. The work reported here involved an investigation into the preparation of YAG by a nonhydrolytic sol-gel route and the influence of heating time at low temperatures to obtain YAG from inorganic precursors (yttrium and aluminum chloride). AlCl3, YCl3 and ethanol were reflux reacted under an argon atmosphere. Europium III chloride was added as a structural probe. The powder was treated at 800 °C for 1, 2, 4, 8 and 16 h. The YAG structure was analyzed by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal analysis (TA) and photoluminescence (PL). The XRD revealed only peaks corresponding to the YAG phase. PL data showed that the YAG phase was formed in 2 min with samples pretreated at 50 °C. For the samples pretreated at 800 °C, the YAG phase appeared in 30 s. The excitation spectra presented a maximum of 394 nm corresponding to the 5L6 level, while the emission spectra of Eu III ions showed characteristic transition bands arising from the 5D0 → 7FJ (J = 1, 2, 3, 4) manifolds at maximum excitation. The magnetic dipole 5D0 → 7F1 transition exhibited greater intensity than the electric dipole 5D0 → 7F2 transition. This methodology proved efficient for obtaining YAG phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.