Abstract

A novel recoverable visible-light photocatalyst, amorphous Fe2TiO5/C composite, was prepared via nonhydrolytic sol-gel method with carbon-containing precursors as in-situ carbon sources. It is demonstrated that the precursors, iron ethoxide and butyl titanate, react to form Fe-O-Ti bonds in gel through a ether elimination reaction and amorphous Fe2TiO5 at 300 °C, which finally crystallizes at 600 °C. The residual organic groups form uniform-doped C. Interestingly, the photocatalytic activity of amorphous Fe2TiO5/C is distinctly superior to those of its crystalline counterparts without C and P25 (43-fold increase and 12-fold increase, respectively), which is mainly attributed to the incorporation of C (8.17 wt%) and amorphous Fe2TiO5 with a hollow spherical structure and a high BET surface area of 195.5 m2/g. Importantly, the photocatalyst can be recovered with a recovery rate of 100% simply by an external magnetic field, making it have promising applications in the wastewater treatment field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.