Abstract
Let k be a positive integer and let m be the dimension of the horizontal subspace of a stratified group. Under the condition k ≤ m, we show that all submanifolds of codimension k are generically non-horizontal. For these submanifolds, we prove an area-type formula that allows us to compute their Q − k dimensional spherical Hausdorff measure. Finally, we observe that a.e. level set of a sufficiently regular vector-valued mapping on a stratified group is a non-horizontal submanifold. This allows us to establish a sub-Riemannian coarea formula for vector-valued Riemannian Lipschitz mappings on stratified groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.