Abstract
SUMMARY A cohort of 300 women with breast cancer who were submitted for surgery is analysed by using a non-homogeneous Markov process. Three states are onsidered: no relapse, relapse and death. As relapse times change over time, we have extended previous approaches for a time homogeneous model to a non omogeneous multistate process. The trends of the hazard rate functions of transitions between states increase and then decrease, showing that a changepoint can be considered. Piecewise Weibull distributions are introduced as transition intensity functions. Covariates corresponding to treatments are incorporated in the model multiplicatively via these functions. The likelihood function is built for a general model with k changepoints and applied to the data set, the parameters are estimated and life-table and transition probabilities for treatments in different periods of time are given. The survival probability functions for different treatments are plotted and compared with the corresponding function for the homogeneous model. The survival functions for the various cohorts submitted for treatment are fitted to the mpirical survival functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series C: Applied Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.