Abstract
We consider the existence of solutions of the following $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition: \begin{equation*} \begin{cases} -\mbox{div}\hspace{.07em}(|\nabla u|^{p(x)-2}\nabla u)=f(x,u) &\text{ in }\Omega , \\ u=0 &\text{ on }\partial \Omega .% \end{cases} \end{equation*} We give a new growth condition and we point out its importance for checking the Cerami compactness condition. We prove the existence of solutions of the above problem via the critical point theory, and also provide some multiplicity properties. The present paper extend previous results of Q. Zhang and C. Zhao (Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, \textit{Computers and Mathematics with Applications}, 2015) and we establish the existence of solutions under weaker hypotheses on the nonlinear term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.