Abstract

In the mitral valve, regional variations in structure and material properties combine to affect the biomechanics of the entire valve. Previous biaxial testing has shown that mitral valve leaflet tissue is highly extensible, and exhibits nonlinear, anisotropic material properties. In this study, experimental measurements of mitral valve leaflet deformation under quasi-static pressure loading were performed on isolated porcine hearts. Biplane video images of markers placed on the anterior leaflet surface were used to reconstruct the 3D position of the markers at several pressure levels over the physiological range. A least-squares finite-element method was used to fit parametric models to the markers and to calculate the deformation over the surface. The results showed that the leaflet deformations were anisotropic, exhibiting a large nonhomogeneous radial stretch and a small circumferential stretch. This information can be used to better understand how the valve deforms under physiological loading, and to help design treatments for valve problems, such as mitral regurgitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.