Abstract

Nonholonomic models of automobiles are developed by utilizing tools of analytical mechanics, in particular the Appellian approach that allows one to describe the vehicle dynamics with minimum number of time-dependent state variables. The models are categorized based on how they represent the wheel-ground contact, whether they incorporate the longitudinal dynamics, and whether they consider the steering dynamics. It is demonstrated that the developed models can be used to design low-complexity controllers that enable automated vehicles to execute a large variety of maneuvers with high precision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.