Abstract

The Hopf insulator is a three-dimensional topological insulator outside the standard classification of topological insulators. Here we consider two types of non-Hermitian Hopf insulators, one without and one with the non-Hermitian skin effect. The isolated gapless points of the Hermitian model are broadened into finite regimes in the non-Hermitian models. However, the modulus of the Hopf index remains quantized in the gapped regions. The model without the non-Hermitian skin effect allows an accurate evaluation of its generalized Hopf index and energy spectrum, showing an agreement between the gapless-regime estimations from the systems with periodic- and open- boundary conditions. Near the zero-energy plane, Fermi rings can be observed whenever the Hopf index is quantized at nonzero values, and there is a bulk-boundary correspondence between the modulus of the Hopf index and the number of Fermi rings. The other model manifests the non-Hermitian skin effect in the generalized Brillouin zone and shows the skewed profiles of the bulk states. The Hopf index and energy spectrum are shown to be sensitive to the boundary condition in the presence of the non-Hermitian skin effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call