Abstract
Estrogen replacement therapy in menopausal women has been suggested to be beneficial in preventing the progression of cognitive impairment in Alzheimer disease. We demonstrated previously that the phosphatidylinositol 3-kinase (PI3-K)/Akt signal transduction pathway plays a pivotal role on the neuroprotection provided by 17beta-estradiol against acute glutamate toxicity. In the present study, we investigated the mechanism of neuroprotection against apoptosis because acute glutamate toxicity predominantly induced necrosis. 17beta-estradiol provided neuroprotection against apoptosis induced by staurosporine. This neuroprotection was inhibited by pretreatment with a PI3-K inhibitor, LY294002. An estrogen receptor specific antagonist, ICI182780, also suppressed the neuroprotection provided by 17beta-estradiol. Western blotting analysis demonstrated that treatment with 17beta-estradiol induced the phosphorylation of Akt within 5 min, which was suppressed by pretreatment with LY294002 and ICI182780. Furthermore, 17beta-estradiol induced phosphorylation of the cAMP response element binding protein (CREB) at Ser(133) within 15 min and then upregulated Bcl-2 in a PI3-K/Akt-dependent manner. Because CREB is known to be a transcription factor for Bcl-2, these results suggest that 17beta-estradiol exerts its antiapoptotic effects by CREB phosphorylation and Bcl-2 upregulation via nongenomic activation of the PI3-K/Akt pathway in cultured cortical neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.