Abstract
The precise modulation of electrical activity in specific neuronal populations is paramount for rectifying abnormal neurological functions and is a critical element in the therapeutic arsenal for neurological disorders. However, achieving a balance between minimal invasiveness and robust neuroprotection poses a considerable challenge. Herein, we present a nanoneuromodulation strategy integrating neuroprotective features to effectively address epilepsy with minimal invasiveness and enable wireless functionality. Strategically engineered nanotransducer, adorned with platinum (Pt) decoration with titanium disulfide (TiS2) (TiS2/Pt), enables precise modulation of neuronal electrical activity in vitro and in vivo, ensuring exceptional temporal fidelity under millisecond-precision near-infrared (NIR) light pulses irradiation. Concurrently, TiS2/Pt showcase a pronounced enhancement in enzyme-mimicking activity, offering a robust defense against oxidative neurological injury in vitro. Nanotransducer-enabled wireless neuromodulation with biocatalytic neuroprotective capacity is highly effective in alleviating epileptic high-frequency neural activity and diminishing oxidative stress levels, thereby restoring redox equilibrium. This integrated therapeutic approach reduces the severity of epilepsy, demonstrating minimal invasiveness and obviating the requirements for genetic manipulation and optical fiber implantation, while providing an alternative avenue for neurological disorder treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.