Abstract
The slow decay of charge carriers in polymer–fullerene blends measured in transient studies has raised a number of questions about the mechanisms of nongeminate recombination in these systems. In an attempt to understand this behavior, we have applied a combination of steady-state and transient photoinduced absorption measurements to compare nongeminate recombination behavior in films of neat poly(3-hexyl thiophene) (P3HT) and P3HT blended with [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Transient measurements show that carrier recombination in the neat P3HT film exhibits second-order decay with a recombination rate coefficient that is similar to that predicted by Langevin theory. In addition, temperature dependent measurements indicate that neat films exhibit recombination behavior consistent with the Gaussian disorder model. In contrast, the P3HT:PCBM blend films are characterized by a strongly reduced recombination rate and an apparent recombination order greater than two. We then assess a number of previously proposed explanations for this behavior including phase separation, carrier concentration dependent mobility, non-encounter limited recombination, and interfacial states. In the end, we propose a model in which pure domains with a Gaussian density of states are separated by a mixed phase with an exponential density of states. We find that such a model can explain both the reduced magnitude of the recombination rate and the high order recombination kinetics and, based on the current state of knowledge, is the most consistent with experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.