Abstract

We use the delta N -formalism to investigate the non-Gaussianity of the primordial curvature perturbation in the curvaton scenario for the origin of structure. We numerically calculate the full probability distribution function allowing for the non-instantaneous decay of the curvaton and compare this with analytic results derived in the sudden-decay approximation. We also present results for the leading-order contribution to the primordial bispectrum and trispectrum. In the sudden-decay approximation we derive a fully non-linear expression relating the primordial perturbation to the initial curvaton perturbation. As an example of how non-Gaussianity provides additional constraints on model parameters, we show how the primordial bispectrum on CMB scales can be used to constrain variance on much smaller scales in the curvaton field. Our analytical and numerical results allow for multiple tests of primordial non-Gaussianity, and thus they can offer consistency tests of the curvaton scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.