Abstract

We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations (IC) of partially coherent light in a weak atmospheric turbulence in the fast detector measurement regime. The derived relation reveals that the medium turbulence acts, in general, as an additional noise source enhancing the IC of partially coherent beams. The maximum of the beam IC is, in general, enhanced, causing the fields to exhibit super-Gaussian statistics. On the other hand, the relation indicates that turbulence-induced noise is negligible for sufficiently low coherence light, which reveals the condition for the turbulence-free correlation imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.