Abstract

Spinal cord injury (SCI) and the consecutive devastating neurological sequelae have an enormous individual and economic impact. Implantation of functionalized hydrogels is a promising approach, because they can serve as a matrix for the regenerating tissue, carry and release bioactive molecules and various cell types. We already demonstrated that non-functionalized soft alginate hydrogel supported axonal outgrowth and protected neurons against oxidative stress in vitro. Here, we investigated the effects of such soft alginate hydrogels on locomotor recovery in small and large spinal cord lesions. Hemimyelonectomy of 2mm or 4mm length was performed in rats and soft alginate hydrogel was implanted. Functional recovery of the hindlimbs was assessed in the open field [Batto Beattie Bresnahan (BBB) score] and using swimming test [Louisville Swim score (LSS)] for 140days post injury (DPI). Reference histology was performed. Rats that received an alginate implant into 2mm spinal cord lesions demonstrated significantly improved locomotor recovery compared to controls detectable already at 10 DPI. At 140 DPI, they reached higher LSS and BBB scores in swimming and open field tests, respectively. However, this beneficial effect of alginate was lacking in animals with larger (4mm) lesions. Histological examination suggested that fibrous scarring in the spinal cord was reduced after alginate implantation in comparison to controls. Implantation of soft alginate hydrogel in small spinal cord lesions improved functional recovery. Possible underlying mechanisms include the mechanical stabilization of the wound, reduction of secondary damage and inhibition of fibrous scarring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.