Abstract

Little information is available upon the effects of carbon nanotubes (CNT) on the airway barrier. Here we study the barrier function of Calu-3 human airway epithelial cells, grown on permeable filters, after the exposure to commercial single-walled or multi-walled CNT, produced through chemical vapour deposition. To assess changes in the paracellular permeability of CNT-treated Calu-3 monolayers, we have measured the trans-epithelial electrical resistance (TEER) and the permeability to mannitol. Multi-walled CNT caused a large decrease in TEER and an increase in mannitol permeability but no substantial alteration in monolayer viability. Single-walled CNT produced much smaller changes of TEER while CNT, synthesized through the arc discharge method, and Carbon Black nanoparticles had no effect. If commercial multi-walled CNT were added during the formation of the tight monolayer, no further increase in trans-epithelial resistance was observed. Moreover, the same nanomaterials, but neither single-walled counterparts nor Carbon Black, prevented the TEER recovery observed after the discontinuation of interleukin-4, a Th2 cytokine that causes a reversible barrier dysfunction in airway epithelia. These findings suggest that commercial multi-walled CNT interfere with the formation and the maintenance of tight junctional complexes in airway epithelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call