Abstract

End-capped modification is an efficient approach for enhancing the power conversion efficiency of organic solar cells (OSCs). Herein, five novel acceptor molecules have been designed by end-capper modification of the recently synthesized molecule NTIC (R). Different geometric and photovoltaic properties like frontier molecular orbital analysis, absorption maximum, transition density matrix analysis, reorganizational energy, binding energy, oscillator strength, energy of excitation, and charge transfer analysis of designed and reference molecules have been computed by employing density functional theory and time-dependent density functional theory. Designed molecules expressed a narrow energy band gap (Eg) with red-shifting in the absorption spectrum. Additionally, low excitation and binding energies are also noted in designed molecules. Excellent values of hole and electron reorganizational energies suggested that designed molecules are effective contributors to the development of the active layer of the organic solar cells. Further, a complex study is also performed for evaluation of charge transfer between the acceptor molecule and the donor polymer. Results of all analyses recommended that designed molecules are effective candidates for high-performance organic solar cell applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.