Abstract

This paper focuses on the synchronization of reaction-diffusion complex dynamical networks with coupling delay. In order to reflect the uncertainties of the controller, the nonfragile problem is considered. Furthermore, we also take into account the dissipativity analysis problem, which contains the $$\cal{H}_{\infty}$$ performance and passivity performance in a unified framework. By utilizing the Lyapunov functional method, two sufficient delay-dependent conditions, which ensure the considered system is globally asymptotically synchronized onto the unforced node and strictly dissipative, are established in terms of linear matrix inequality. Finally, three numerical examples are employed to demonstrate the effectiveness of the design methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.