Abstract
Polycarboxylic acids have been used as nonformaldehyde crosslinking agents for cotton with sodium hypophosphite (NaH2PO2) as the catalyst to replace the formaldehyde-based dimethyloldihydroxyethleneurea (DMDHEU). Maleic acid (MA), an α, β-unsaturated bifunctional carboxylic acid, can esterify cotton but is not able to form crosslinking between two cellulose molecules by itself. In this research, we discovered that the wrinkle resistance of the cotton fabric treated with MA and NaH2PO2 was significantly increased and phosphorus was bound to cotton when the treated fabric was exposed to temperatures higher than that required for esterification of cotton by MA. Elevation of the fabric wrinkle resistance and increase in quantity of the phosphorus bound to cotton had similar dependency on curing temperature, on MA concentration, and on NaH2PO2 concentration. All the data support the hypothesis that H-P-(residual of NaH2PO2) added to >CC< of the MA already bound to cotton by esterification, thus forming a new crosslink between two cotton cellulose molecules. The cotton fabrics treated by MA/NaH2PO2 showed fabric wrinkle resistance similar to that treated with DMDHEU, but the breaking strength and tearing strength of the MA-treated cotton fabrics were significantly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.