Abstract

Alzheimer disease (AD) is the most prevalent neurodegenerative disease, characterized by an increased deposition of β-amyloid (Abeta) within the central nervous system, leading to neuronal death. The availability of effective models, in which confirming novel pathogenic hypotheses and developing therapeutic targets, represents a very important goal for the field of AD. Fibroblasts from these patients may be relevant models in which addressing these issues, as they display biochemical alterations mirroring SNC ones. In this work, fibroblasts obtained from controls were studied after exposure to nonfibrillar Abeta 1-42, showing decreased glutamate uptake, similar to that observed in AD cells, in absence of transporters modifications. Nonfibrillar Abeta 1-42 was able to induce in control cells mitochondrial alterations and p38-phosphorylation, mirroring similar alterations found in AD fibroblasts. Under our experimental conditions, this treatment induced neither apoptosis nor necrosis. To investigate a putative role of p38-modulation in mediating nonfibrillar Abeta 1-42 toxicity, fibroblasts from controls were pretreated with retinoic-acid, and SB203580, a p38-inhibitor. These pretreatments prevented both p38-phosphorylation and glutamate uptake inhibition. Our results suggest that nonfibrillar Abeta 1-42 downregulates glutamate transporters activity interfering with p38-activation and mitochondrial stress. Thus, modulating complex kinase signaling pathway might represent a future therapeutic target in AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.