Abstract

Migration and transformation of toxic metal (loid) s in tailing sites inevitably lead to ecological disturbances and serious threats to the surroundings. However, the horizontal and vertical distribution of bacterial diversity has not been determined in nonferrous metal (loid) tailing ponds, especially in Guangxi China, where the world's largest and potentially most toxic sources of metal (loid) s are located. Distribution of bacterial communities was stable at horizontal levels. At the surface (0-10 cm), the stability was most attributed to Bacillus and Enterococcus, while bacterial communities at the subsurface (50 cm) were mainly contributed by Nitrospira and Sulfuricella. Variable vertical distribution of bacterial communities has led to the occurrence of specific genera and specific predicted functions (such as transcription regulation factors). Sulfurifustis (a S-oxidizing and inorganic carbon fixing bacteria) genera were specific at the surface, whereas Streptococcus-related genera were found at the surface and subsurface, but were more abundant in the latter depth. Physical-chemical parameters, such as pH, TN, and metal (loid) (As, Cd, Pb, Cu, and Zn) concentrations were the main drivers of bacterial community abundance, diversity, composition, and metabolic functions. These results increase our understanding of the physical-chemical effects on the spatial distribution of bacterial communities and provide useful insight for the bioremediation and site management of nonferrous metal (loid) tailings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.