Abstract

We report the linear thermal expansion and magnetostriction of the heavy-fermion compound CeRu2Si2 along its a- and c-axes at temperatures down to 10 mK and in magnetic fields up to 9 T using a high-precision capacitive dilatometer. From the magnetostriction measurements, a large anisotropy between values for the coefficient of magnetostriction along the a- and c-axes was found in the Landau–Fermi-liquid (LFL) state. Non-Fermi-liquid (NFL) behavior was observed for both the linear thermal expansion below 60 mK for all applied magnetic fields and the linear magnetostriction below 0.5 T and 300 mK. The results suggest the existence of an additional pressure-driven quantum critical point (QCP), and a crossover from the NFL state to the LFL state occurs in CeRu2Si2 at ambient pressure near the QCP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call