Abstract

We investigate the bulk properties of protoneutron stars in the framework of a relativistic mean field theory based on nonextensive statistical mechanics, characterized by power-law quantum distributions. We study the relevance of nonextensive statistical effects on the beta-stable equation of state at fixed entropy per baryon, in presence and in absence of trapped neutrinos, for nucleonic and hyperonic matter. We show that nonextensive statistical effects could play a crucial role in the structure and in the evolution of the protoneutron stars also for small deviations from the standard Boltzmann-Gibbs statistics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call